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A _Central Lim

imit Theorem for Ne

£E§9£;9§§;9£~afﬂgrmal:§§§§i@n@gﬂ;:

by
Tze=Chien Sun

Let X

s t = 0;41,+2, ... be a real hormal stationary

t
process with mean EXt

113

0 for all t and covariances

l !t

T, = cov(XJ,Xjﬂc = "*2‘1? J‘ f()\)d}\ s K=0,41,42, ¢+

where £€L2(-x,n). Since X, 1s a real process, £(\) 1is
symmetrical with respect to A=0, i.e. £(-\) = £(\) for
« N < m. Since r, 1s a positive definite sequence,
£(A\) 2 0 for x ¢\ K .

Let

f(>~)d>\ £ 0y = max(1,¢,)

c 1 & :'}:,_:
(1)

1l
4@';_)
=) AC—')::I

fa(x)dx < €, = max(l,ep).

62

i
S
"——J

A

Note that r(k) above is defined only on [-m,x].
However we may at times find it necessary for later use to
extend £(\) to the whole real line by periodicity with period

g‘!!; ises
f(Menn) = £(N) , -m KN < m, PROELHR, 00 .

¥ This research was supported by the Office of Naval Research

" ynder Contract Nonr 562(29) at Brown University. Reproduction
in whole or in part is permitted for any purpose of the
United States Government.
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It has been known that a stationary process generated
by any linear function of a normal stationary process is again
normal if it exists in the mean. But a stationary process
generated by a non-linear function of a normal stationary process
is not in general normal, e.g. Xi has as its marginal distribu-
tion a chi-square distribution and hence is not normal. However,
it 18 a very interesting question to ask what conditions we
should impose on the original process and the form of the non-
linear functions so that the new stationary processes generated
by those non-linear functions of a normal stationary process obey
the Central Limit Theorem. The solution of this problem will
provide more knowledge on the non-linear problems and, in
particular, will help us to carry out estimations of parameters
involving non-linear functions of the process.

It was proved by Rosenblatt [1], estimating the

-, N-|x| ,
T = § Z | Xf%guo KOsl ...s8, 870 the covariance estimtes of
r., and £€L2, then

maximum eigenvalue of a Toeplitz matrix that if

L
\m(;"‘_!‘_m k) » lg;o.l) e ,,B

are asymptotically Jointly normally distributed with mean zero

and covariances

R 2
3 k"% J cos JA cos kA £(A)a\ , J,k=1,2,...,8,
J 9% ? =x

The result obtained here is a generalization of that given above.
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We shall first prove under the conditions

(1) fer® (1) m ——-3— £(Mar extsts and
is finite; for the case m any posSitive o6dd integer, that
N

l__ b 4 ; .
N2 t§l xt+k(“) Xt+kéa) a)

bty
a=1,2,...,n where n is a positive integer and kéd),kéa),aea,kéé)
are Integers, are asymptotically, jointly normally distributed
with mean zero and certain finite covariances r p, a4, =1;2;5...50.
The main result will be that under conditions (1.) and (11)
N

 JA t+k(°‘) pyel®) T " (o)

-

y

- Ext+kla) xt+kéa) t+kr(n§))

a=1,2,...,n where n and m, are positives integers and

kia) kéz) are integers, are asymptotically, jointly normally
distributed with mean zero and certain finite covarlances. How=-
ever if my, a=1,2,...,n are all even, then the condition (11)

is not needed.

(1) and (11) are sufficient conditions. Whether they
are necessary is still unknown. In an example in 82 of [2], it
was shown that given any p with 1 < p < 2 one can construct an
fin but not in Lg such that one does not have asymptotic

normality of the covariance estimate. Because we assumed fé,Lg
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necessary and sufficient condition for %g z
Ne t=1

1y normal, we see from the above mentioned example that (1) and

X, being asymptotical-

(11) are rather reasonable sufficient conditions. Nevertheless,
vhether every normal stationary process with f‘é;La falls to have
asymptotic normality of the covariance estimate or of any other
non-linear functions of the process is still an interesting open
problem.
Let
iy ®
¥(t) = £ I
m=l k==
1=1,...,m

%

i

a, (X, Xouy, v
Kqa e oKy TEHRy UK

X )-

. tk

A sufficient condition is given for the new process ¥(t) having
asymptétic normality.

We think it worthwhile to mention some other work on
non-linear functions of a random process, e.g. [3], [4], [5],

[6], although they are not directly related to our work.
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1. An Auxiliary Theorem.

We say {al,ae,.a 58, } is an unordered set if
{al’aa’ 8 } and {b,,b 2,.;‘,bn} are considered the same when=
ever the bj's are Just a permutation of the aJ's; And we say
{al,ae, .s2,} 18 an ordered set if {a3,2,, cees8,} and

less

{bysbysecesb } ave considered different from each other un
ajébj for all j=1,2,...,n. For example, if {ai,ag,at} represents
& 3-dimensional vector, it 18 an ordeved set for {al, 2,a3} =
gbl,ba,b3}, implies a;=b,,2,%by,a5=b, and if {ai,ag,ag} are the
result of picking successively 3 numbers from 1,2,...,n and we
do not care which was picked out first and which was second and
which was third, in this case {a),a,,a5} 1s an unordered set
because {1,2,3} = {3,2,1} = {1,3,2} = {3,1,2} ={2,1,3} = - {2,3,1}.
We shall call a partition into pairs of a set

{al,.. ,an} where n is even, and all aJ are distinct, an

unordcred éollection of mutually disjoint, unordered pairs

Ap s { J2p~l p}, p_l 2.’0. ’n/2, and Jl’JQ"'""J —l 2,

n/2
such that (J/ A = A,

Pl P
gggg;ggy%; Let T {tl,ta,...,tk} be a set of k integers. Then

* 00 X
By
if k 1s odd
ty =ty rtd -ty . Tty -t 1f k 1s even
kYl Y2 Y3 Y4 k-1 Yk
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where é denotes summation over all possible partitions into
k
pairs of the set T, with the understanding that in counting

H

possible partitions inte pairs of TR we shall regard the tj!s
as entries distinct from each other insteéad of taking them as

numerical numbers, so that there are exactly —prasye— t
=)

[Proof]. Differentiating the multi-variate characteristic fune=

X, X X
tion of tl’ t2""’ tk )

il
2]
Y
(]
[N
T Mix
Hl
. F
f—ux :
o \
C
L_T._.J

Wby ot -

= e

if k 18 odd

— z r, r. RS
] = *t, ~t, "t, =t, *°°7%, =%, |
5)! over all “J, "Jy, “Jo J- ‘J.‘
ordered 12 U3 b k=l ok
collections of mutually
disJoint ordered pairs
[t ,t . ,t )] such that

§ Jk-l Iy

('cJ ,t )U...U(tJ{_ Jk)

dk-1 YKk if k 1is even.
QQE!D!
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Suppose we let A = fal,ae,...,a }, B = {bi’bé""’bn3 and

¥

i

- x, X~ X~ Ld EX X () ix-
a ay7ay " ey a3 % %

Yo Hy Xy sk G X Ly

i

whére aJ, J=1;2; ...;m and bJ, J=1,2, ...,n are any integers. We

like to have an explicit formula for
EBY.Y =E(X_ X ...X XX X ...X )
"_E(-X X s -X )E(l ": e e a”ﬂ )
8 8 xb;ixba xbzn

in terms of summation over the set AUB, Note that in taking

the union of A and B; we consider them as sets econsisting of

distinct elements al,a 8 , b

2’5 m l,be,oi
them as numerical values.

.sb, instead of taking

1f m+n is odd (a)

r r . o
b =b_Fp_ b v Ty -b
Py Py P3 Py Poutap-1 Paytap

r r, P
”aﬂ,_ -,-b 'b ‘!‘.-,_a- ’b‘
Jag+1” Powreprl Jagre Pograpra In Pp

if mtn 18 even (b)
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Where _ZJ denotes all partitiens into palrs
AUB

(ag 8y doenslay ooy )y (b, oy ), (b,

)" ¢ ‘é‘(ajmjbpn)}

2w-
(ajéw*l’bpéw*éﬁ+i
of AUB such that 0 £ 2w < m and 0 < 2w+2B < n. Note that in
counting the partitions we consider A;B as sets consisting of
distinct elements.

[Proof].

(a) 1s clear.

(0) B(X «oX, (K .o, )

~

s 3 I‘ A :
a a ~a
AUB 33,7050 R5000 s,

rb ...r b
Pl pa Poyrap-1 Pouwtep

r b ..lr

a a, =b

Jourl  Pouwrep+l dn Pn

where O < 2v < m, O < 2w+28 < n by Theorem 1. However,

those terms in £ with 2w=m and 2w+2B=n are canceled by

AUB

—E(xal,..x_m)g(xbl...xbn), Hence (b) is established.
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In Theorem 2, we shall assume in addition to

re1%(m,n), that

1 4o osinS3h .
oz [ ol toa @)

exists and is finite. For convenienice of writing, let us define
o n sin” 5 N
£(0) = lim ——-2- 5 f I £(N)an

§0 from here on whenever condition (2) is assumed, we define

£(0) as in the above formula. Since the integral

is finite for each N and its limit as N => oo exists and is

finite, there exist a Oy, 1 < C; < o such that
1 'n\: sing A 7
2 | et <o )

n

POl

for all N,

We also need the following results:
N(k +)\ +a)

2 __ o( (M )aran,

TN
= il N‘Mﬂga
=7

[}
e
o
in
QA
=

)
ne 1({1;)\;%) Pz )anan, = ep < Gy

3y tagra)

_ sin 2()\1+>~2+a)

L
;l-w-

e(a)r(\)anan, <Gy (4)
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for any real a and for all N. We need to introduce some useful

notation here.

Let m and n be positive integers such that mtn 18 even.

I

f l, az, ,am
Ni’bég i .,bn
Modgseeishy
N Fo.+i(a )X
2" Jpwy day
(b, b )k 2 ¥3(b, b IN ot Hi(D, <b, I\
W2 : |
e 1 P3 p4 ' Poy-1+28 P2ut2p 2w
By b RIS
1(aJ -b, )x
m ®n
e . b()\gw+(3+l+)\2w+ﬁ+2 . +A,0)

* . .
where (1) = was defined in Corollary 1.1.
' AUB ‘

(11) &(x,0) is a d-function at x=0 such that

T
5— f X,0)dx = 1.(5)
<
Noi;qpion 2. Let
sin -2- A

(6)

Kn(N)

311;1"1 A




Suppose féLe(aat »®) and

exlsts and is finite. Let m be a positive 6dd integer. Then

. N

“ - -
Y, == £ X X () «o0 X 4
Moo = 3 g1 t+k(°) t+ké°:) 'tﬂcé'f)

a=l;2,...,n wheré n 18 a positive integer and k{a),ké@, ,krﬁa)

are integers, are asymptotically, jointly normally distributed

with méan zeroe and covariances

¥ kla) kgd) k(a)i‘
k:(LB),kéB),.;.,lg_(nB) £(A)E(N,) . f (M)

d>‘1 )\2 ‘e .dh
a8 = 1,2,...,n.

The proof of Theorem 2 will be given in several steps
formulated in terms of several lemmas. In the first two lemmas,
we shall show

N,a N ,B —_— rh,ﬁ as N =—>o0

G,B = 1;2;99~;n9

Let Y, = Z Po ¥ be any linear combination of Y
N a=1 @ N,a

It will be shown 1n the remaining lemmas that

ao

B '!N —> the Zéth moments of a Gaussian distribution

n

n
with variance (2 2
( =1 B =1 p‘Qp'B Q}B)
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The "moment convergence theovem" [7)] then assures that Yy is
asymptotically normally distributed. This 1s Just the assertion
of Theorem 2.

Lemma 2.1 Suppose FE L2(-m, ) and a is any real number. Then

! .fn KB +hgra) |2(0) -2 (-hy-a) 1Par an

—> 0
uniformly for all a as N => o,

[Proof]. First we make the following transformation. Let

Mthote = uy

Ay B

n
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Then, we have

Tt Ry ta
J Tl‘f_\lg a

m [ J K.ﬁ(ul)Ii‘(ul-ug-a)-f(-uéf-a)l2duldu2
“ =T =fttugyta

oftta T .

ST =8
ELS ul a

1. <3
T ul a

a
* o) J Koy, ) j‘ £(uy -uy-a) -2 (~uy-a) | Pauyan,  (7)
DT w2mta <1t

We can rearrange the order of integration because the above
integral 18 absolutely integrable for each N. Since féi?(afn:ﬁt)
and f is periodic on the real line with period 2%, for each ¢ > O,
we can find a d(e) > O, such that

= i | £(xen)-£(\)]2an < &

3 [ e 5

-1t

whenever | x| < 5(e). Also let

e,
N(e ) = Integral part of [-——-§~—1—-— 'ft +1].
sin~ ) 5

§ ={u: lu;-2kn| < 8(e)/2 for k = (n-1), n, (n+l) or (n+2)}
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Il = {ul a < u < Qﬁeiea}

=
i
=
=

-anta < W) < 8}
Then (7) becomes

2z ( If N

. )
.r 3“12«(“1) [ 1£(uy-uy-a)-£(-u,-a) |augduy

Il -n+ul-a

T, =8
u;=a

5“1%(“1) _r If(ul'uz'a)"f('ua'a)|2du2du1

=Tt

+
= |
D
ta
+

iIn
Q].-
=zl
=
Ho
o
g
L
e
FoX
i
-
-+
A ||"‘
b4 |
|
|
POl

< e if N > N(e).
Hence lemma (2.1) 1is proved.

Lemma 2.2 Let m be a positive 0dd integer. Then

E{;ﬁ? S0 @R ) Yy )
[V 671 £p=1 tl+k RN byt
"’C(a ) k2 ) .o .akélg );

— w2 f exp 1P i), P e )0g) ot
_ )\l ’)\2 ?"!!)\.m

-

ahydh, -+ Ohy

as N —> oo for a,p=1,2,...,n and moreover |r, gl < .




562(29)/8 15
[Proof]. Let A, = {ki{“), . (a)} Ay = {kl .,kélB)'} .
N

Then ‘ N
lis I (x , X )
N (G) (a) - oa(a)
{ .1—1 t2—1 t +k t1+ tfkﬁi _

2o g "

( tgﬂ;%ﬁﬁt?i*ké“ T t2+}g§lﬁ))}

=l§ gE“(x ' cee X )
o N =g h +k:(L°‘ ké“) o t1+lﬁ$1a)

%2, 2. («) ¢ ,_;A(cz) ceef o la) (a)
ti 1 t =1 AGUAB (t +le ng ) (tfk‘j‘?wel ~t4 ki’au)

(t +k(f3) k(B)) (t +k(9) -ta-k(p))
= Pay

LA R

* . R
where I was defined in Csrollary (1.1).

* AG&JAg N N

AiUAB (2n)™N t?_—l ti—l
i(k(a) k(a))K + ... +i(k(u) k(a))x‘

b8
J I 1 J2u 1 J2w )
" (B)_ (s) nlB) (@)
i(k k )x ik P kpaw))\z‘*’
(a) (a) 4 (1le) i (a)y,
. (kjeml gy 2utt” A M 8 M
1("aw+1+"2m+2 ooty '1()“2wi-1 \agrat s+ ) te

f(xl)r(zz) f(xm)dxldx.a A,
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= 2* 1 “iib}?
AUAB (2m““N J _'

=T

ela) s la)y, . () ()
R N IRt R A

1(1{([3) k(B)))\ +1(k(B) k(B)))\

m m

. daurs Poysl

ﬁ;(xéw*1+x2w+2+i.i+xm)f(xl)f(x2)...f(xm)axlaxég,.dxm (8)
We can change the order of integration because those integrals in
(8) are absolutely integrable for each N. Note also that the
above integrals are all real. Thelr imaginary parts are zero

for all N because £(\) is symmetric about A=0. In order to show
that, for 2w < m=l,

x
(21t)m Nj \-r

Ke Mgy Pasat s« A EEO) o2 (A e N, - wady

1(1((@) k(a)))\ +, +1(k((1) kpB)))‘m

" i(k(‘;) k(“))xl+ +1(k(°‘) k“”)(-x SRR
T )l LJ ©
£ IEOG) - 2Oy )T (Aopin Pore™e =Py )

DN S S (9)

it suffices to prove
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'(21:)“‘ f j N Kﬁ Mot 2uwrpt s Ay

—s 0 (10)

as N —=>60 for 2w < m-1. However, it is equal to

T;Ké II £(M)E05) £ (0 0)

(“‘;)‘ffﬁ‘ (F BOauat e ) 0 ) 1£0) 0Ny =Dy )|
- Dy Wy, ]
A\ dhg .. Ny (11)

And by Schwarz Inequality,
1l

” Kfl(kaml N E (N g)
£ O) £ (Agppg = e v ooy g DA, Ny

s '[(*i;eﬁ f{ VTN W E LW 1)axm!la>\mj%

A E0g) gy -+ Ny ) [0y i B

(Zﬂ)‘N

-—> 0 uniformly for all ngﬂel” !)‘mga as N =0
because the first integral is bounded by C% and the second
integral goes to zero uniformly as N => o by lemma (2.1).
Therefore, the integral in (11) and (10) goes to zero as N => o0,

and hence (9) holds.
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In the case 2w=m<l, it is easy to show that
ﬁ; N

1(k(“) k(“))x *, +1(k(“) (%)

. s . I m=1
1l 1 p e 1 m=2 vYm=l 5

CIRL

L) e (B)
éii(kpi -kpg ) 2 +1(kpi12-k(a)l)hm-l
i (@) . (B)y; K2(3
ei(k'j; -kéi My KEO)
i‘(XA )f-(x ) e f(Xm)dkld)xza cdh
LT f éi(k(z)-kgg))xf'"ﬂ(k‘(ﬁié-k(i)l) m-1
(m)m-—T o\

as N =>o00,

_ ,».-—\

(9) and (12) together imply that

( AqUAg(2m)™

7 1(k(“)—k(“))x» +1(k‘“) k(“))k
I R AL Y w1 Jou M

lood e
_nx] 1(k(5)-k(3))k +1(k£B) -k(B))Xaw

e 2w-1

PO E) .. BN )E(0) N Ny .

18

‘a1

(12)

i(k(a) k(B) )\2 l +1(k(a) k(B))( )‘2 ')‘m-l)

. Jowr1l Pouwry’ 4

F)E0) - £ (g 1 )E(Ng =+ o Ny )
Ay dhy. . ah

(13)

where we write £(0) in place of £(-My =My 1o=-++=Ay_1) when

2w=m-1. In our notation (13) is Just
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aaf -
* (k(a)k2 k(a)
o M N )‘m J

Moreover . B is finite because f& Lz(a‘st, ) .
3

Hence, lemma (2.2) is proved.

The following 2 lemma will be needed in lemma 2.5.

Lemma 2.3 Suppose féLz(aat, n) and a is any real number. Then

& +#3) £(\)dA
A j Ke(Ma)f(N)dh = 0
uniformly for all a as N —=> 00 |
[Proof]. For each & > 0, choose a d(e) > O such that
D i <&
d £E(A)AN <gm

whenever $ 1s a measurable set and the Lebesgue measure of S

1s less than d(e). Suppose

2nm < a < 2(n+l)m , for some integer n *

Let Sy = Mt |(wa)-2kn| <§ , for k=n or (n+1)}

I

]

{N e N <}

- (e )L -7 T S - § S SR
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.
\7; j Ky( Mra) £(N)aN

- \_/_;( + \f BI{N:(X*a)f(X)*dK
TV 85(e) I=Sg(e)

<|% f K2 (M+a)dh i a(x)dxr # 2 gl j £(n)an
. b (e) Sa(e) - )

Thus, levma (2.3) is PPOVédé

Lemna 2.4  Suppose £€12(-n,7), then

j KN(+)\ Fhgtay )KN(+)‘2—)‘ .
RENRTNNE NN
£(AIE() . E () ANy . - dy

uniformly

"’")

r ll 1’a2,..0,

integer, and for all pos ssible combinations of plus and minus

a, and n where n is any positive

signs appearing in the kernels, ag N =—> o0,
[Proof]. For each O <e <1, by lemma (2.3) there is an N(e) > 0

such that —=

KN(k+a)f()\)d)\ ¢ & uniformly for all a whenever

2
deapy
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NS> N(e). Then

j ‘f KN(+x i +al)KN(+x AN 3te, J) s KN(+x +8a, )

f(xl)f(xg).iif(Kn)dki‘ 2...dxn

3msPJ

<" <ce
whenever N > N(e), by successive use of lemma (2.3). Q.E.D.
Let

X PRY ¢ F o\ aoe X o a=1.2.....0
Prpes ’"-"(a) 4l "(a) * '_,f‘(a) s LAt .9
t=1 t1+k1 ‘l:.+1<2 t+1,;m

Then EYy . Yy o ... ¥y = 0, when £ is odd, where

l,aa, seesly = = 1,2,...,n; by Theorem 1, However in order to
compute the moment

EXN,dlyN,ag"'Yﬁ,az when £ is even

where G,,0,,...58p = 1,2,...,n. We shall make use of the follow-

ing subindex table.

G = ‘{t +k§al) , ¢ +k;al) s tl+k(al)

(aa 2) (32)

R R R (1)

L . L] L4 . . L] .

(ag) (Gg) 9 (ag }
tz+k1 ’ tz+k2 PRRRY tz km

which 18 closely related to the limit of the above moment.

41-.}-4;£I—
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We need to introduce some new notations with respect to this set
G, for [ even. Nevertheless, we should remark first that we
shall not regard G as a set of integers depending upon the values
of tystns...stp, but shall consider G as a set consisting of Im
distinet elements characterized by the subindices after t and k
so that each of them cceupies a definite position in the table
(1%). For example, totiy "2 is the third element in the second

For corivenience in writing, we shall put

[ {ay)

‘t+k1 Esl
(0g)

85

i
. (a )
 t. ey T =8y

Fo lag)
totky T =8y

(5,)
ﬁ t2+k2 =

]
0]

(15)

(o)

| Bgtky
ﬁ tz*k:g‘f)

i = o

]
~
™=
J
s
£
3
|
»
™D
=
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What we did above is only to change a set with two indices into
a set with one index. The relation (15) gives & one-one corre=
spondence between s's and the positions in Table (14).

ya

Then EY. N,a,

.2 (X (a. )X al) X (o: ))
1 1Hey
t“:"Fk;‘iae) t2+kéa2) tyt (“2)

yrok | (e
LA

sum over tl, cee ,’c 2 and weighted by NZ/ 2 and each sum 1is

characterized completely by the subindices after the r'!s. We
shall call

° {( 3" ) (833’8 Joreea {8y 08 Jﬂm)}
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375 22 Ts, -8, Ts s

Here we recall that the s j*s can be identified with the elements
in Tables (i%) in ornie=one mannes by (15).
We define
(a;) (aq) (aq),
) b} 1 1
Gi {t +k1 ’t +k2 9 io-, 1+km }

{Sl, 52: ii:ism}

2 {t2+k_1 ,t +k2 ""’t2+l{]ﬁ }

g AWEELMEYRERIL N,

]

(]
]

* O * . . L) .

Gy = {tfkiaz)atz“‘éa serest z“%ia'e)}

= {S(ﬂél)ml’s(z_l)mg: cees8gd

Hence @ = G],UGgU -..UGy and GJ
(@, ) (@, )

consider ty +k "1 and t, k"% to be alstinct 1f JyAJ, or

plfpg) . We shall also define two classes of subsets of G

na, =0, jAk. (Since we

(1) H =

i
~~
=
o
A
WQ

.
ke
-
i
;..:
l\)
-
&
—

fpg P < a2 | (17)

n
lanae
jop]
C
@

where Hpg = Gp V) Gq
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(1) L= {1, : §=1,2,...,271} (18)

where L, = @G, J G o s UG,
where L, 63‘1 \J 3 W) Je 3

for some n < £y J; < Jy o< Jps Iysdps.cesdy®
1:2, LI ) ,'Z °
We say an assoclated subindex-palr set
s;—' >7>' 8, 7' S . ".ai,‘rh: S ;,
{(SJI,SJQ)’ (833’834), ,(SJZmal’sJEm)}
where 315005 093y =152; . ..,4m and 5a7£3‘9 s Af a#B , 1is
decomposable with respect to H, if there are mutually disjoint

subsets Sl,Sg, ,S"-z /2 of S such that

£/2
S = \i? S

o L . . . . *
J 8, and for each p, p=1,2,...,£/2 we have Usp =5 (%)
p=1 ° ~

qr

e

TTiet & ={a,b,c,...,d}, by UA we mean UA = aUbUc U ... Ud.

Note the difference of US  and US
(11) (_jsp = the union of all elements of Sp

. . f S
e.g. if o

7 {(51332)5(83:84):"!a(§gg,l;§23)}
then U Sp

{(81585) U(sgs) U0 - UlByy 1,85)]

i

= { 81980283285+ .,sggél,ggz}
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for some q,r=1,2,...,4. Otherwise we say S is not decomposable

with respect to H. As an example, if

(sgm;.pl; s3m+1) 3 (S2m+2’ 83ﬁ'r+2) RN ~:(53ma S,’*fﬁ)

L] L] L] . ] . . . 4 . [ [} . L] L)

(8(4o2)me12® (L1 )it * * *2 (8021 )5 S}
then Si = {‘(Bl"'sﬁfFl)"(s'é’sfrl‘FQ)’ e -:’(Smssam)}

% {(5(£-2)mesB(41)me2) s -+ s (8 (4o1)me B4

hence S is decomposable with respect to H. As another example
if
S = {(8gme8me1)s(80s8040)s - o es(8pp850)
(8ome1983mea ) (Sapeps S3pen) s+ -+ (B3pa8yp)

] . L) . . [ L) . - . L]

(S(Z-g)m1?§(zsl)m+l)’ e (s(ﬂel)m'sl)}

1.e. we interchange the positlons of s, and sp in the above

example. This S 18 not decomposable with respect to H,
Similarly, we say that S is decomposable with respect to L if
there are mutually disjoint subsets 5, and S, of 3 such that
$ =258 U8, and LJ;SPE;’L for p=1,2, Otherwise we say S 1s not

decomposable with respect to L.
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Here we see clearly that when £ > 2, HCL and hence
S not decomposable with respect to L implies S 18 not decompos=

able with respect to H, but not vice versa.

Lemma 2.5 Let £ be a positive even integer and m be a positive

6dd'1nteger; £ >2andm>1. Then, in (16),
1 NoX N ) .

-121-575 tlEl tzr-lz_ rs‘ -5 . r-SJ isjui...r

as N=> o , if 1ts associated subindex-pair set S is not decom-
posable with respect to H.

[Proof]. It 1s sufficlent to show that (19) holds if its
associated subindex-pair set S is not decomposable with respect
to L. Since if S is not decomposable with respect to H but 1s
decomposable with respect to L and say, there are Sl,SQCS such
that

Us; = {831’832""’83 »84 } = ;,kJGfg)...\JGp

‘pm-1  “pm

Us, = {s,

2090098 } = v

S
me#& Jomea’ Jom

then our problem 1s reduced to proving that
1 N N N

72 By By T, -8, Ts, -8, 7T,

NYE =0 B=l £sl B9y i3y J
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¥ X N
;y z pee IR ry 5. ‘o
ool P P domee Sipmes dpmed

LTI P

Im<l Yem

of (L=p) > 3, because in this case the summation in (19) can be
factored into two parts (20) and (21) and either p or £=p must

be 53, and both of them > 2 otherwise S would be decomposable

with respect to H by the fact that p and B-p must be even positive
integers since pm 18 divisible by 2 and m i8 odd. Hence

2 <p, b=p g =2 ¢ 4.

as before the factorization, only now p < 4. We shall factorize
(20) again if its subindex-pair set 15 decomposable with respect
to its corresponding L. We shall do the same thing to sum (21)
if f-p > 2. Keeping on doing this factorization for all factors,
we shall finally, through a finite number of steps, reach the
following situation: Every factor has its assoclated subindex-
pair set not decomposable with respect to i1ts corresponding L
over more than 2 indices, so it is not decomposable with respect
to 1ts corresponding H, Each factor belonging to (1), as we can
show from lemma 2.2, is uniformly bounded for all N. Among all
the factors, at least one of them belongs to (i1) otherwise S
would be decomposable with respect to H., And if we can show all

the factors belonging to (11) tend to zero as N —> oo, then our
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lemma is proved. Therefore, it suffices to show that (19) holds
as N => e , if its S is not decomposable with respect to L.
N N N
ﬂ IR

ée . I‘— ‘ ,S'. “S:»
W tl—l t2—1 tg=l °3° Jg %3370, Jtm-1 Iim

whose associated subindex-palr set S i1s not decomposable with

respect to L. Since this multiple sum 18 characterized by the

should investigate them more in detail. Let us look at the

subindex table
N , (al) 3 .A(al) 7
Gy  tohly T tptky Tl Bytigy (22)

@08 e 00080080

Gy z"“—fz) A ;az) “’z*k:z)

We say a subindex-pair connects GJ
! z
Af one of its elements belongs to Gj and the other belongs to
J1
' «11) + e )) G, and G,. We ca:
32 e.g. (tl+kl s tzﬂk connects ) an . We call an
array of h subindex-pairs of S, h < £, a chain 13 there are

and GJa, 31,32‘7‘1,2;-~-:£

s000sG » 3,73, if afb, such that the first element of
%, J Yoy’ U

the array connects &, and G, , the second connects G, and G, ,
| 3 J2 J2 I3

th connects GJ and @, and we say this chaln

«vey and the h™

In Ikl

connects GJ J PERRTI . We shall call h the length of the
1 92 S

In+a
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chain. As an example,

(t:l*Fk;qe ),t2+k2 ), (t2+k;aé),t3+ki )) (tq +k€ as) t4+k;a4)),
(dh) (a )

(tu*ku 5 3 2"y
15 a chain of length 4 which connects G G5 ’G3’Gu and 65. Since
for finite £ and m, the number of elements in (22) is finite, we
an plck from S a longest chain which connects bthe greatest number
of GJ‘s (there may be more than oéne such chain, we pick any one
of them). Without loss of generality, we can assume that 1t
connects Gl’Ga""’Gb—’bl < £, and write it as

v(-gi*k.(j:.l ’t2 ( 2)) (t ( ‘)353*155}:.3):”5
(Qb_i) (Gb )
."’(tbl’l+k32b153 tb1+ Sa, _2)

chain 1s bl-l, b, £ Z Since S is not decomposable with respect
to L 1f by < £, we are to find a second chatn which is a longest
chain connecting one of Gi’ 2""’Gb to the greatest number of
other GJ's and with no loss of generality, we can assume it

connects G 0@ 479% YRR ¥ with py < Doy £ 4 and write
Py PpTH P10 2

1t as
(g @y, +1) (ap_+2) (ap, 42
(’"’pfkde_b;el’ebfl‘Japl b 1" g 4 72 2n, 42 -
= . (ab !l) (“b )
. ’?(-tba"l+k32b 3 ;tbzﬂgjzb -2)
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chain 1s b2 bl‘ If by < L, we can always find a third chain

which 18 a longest one connecting one of G 2""’Gb to the

greatest number of other G,!'s. Keeping on doirng this; because S

J
1s not decomposable with respect to L and £ is finite, we shall
find a (wl)® chain such that 1t 1s one of the chains connecting
one of G,,Gq,.a.,db to Gbuﬁl’cb“ﬁe""’al’ we write 1t as

(ay ) | (db +1) (°b 1 (“b 2

(t s, T ), (% 5t ) AP
Py Jzp, <1’ Putl gy b#1" sz 41 *Toge’ sz g2

where p < b and Jabwal’szw""’Jezaz are some numbers from
1,2,...,m and the length of this chain is £-b,. Apparently the
number of chains, picked in this way, 18 wtl where wtl < £ and
the total number of subindex-pairs in these chains 1s £-1. Note
that the lengths of the chains are non-increasing and some of
them may contain only one pair. However, the length of the first
chain is always > 2.
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Table of Chains

(a

k 2)) ( 2+k( ) (63)
2

33' 3 3*k54 )@aoa
(“ <-1) ((!b )

Y (t +k 1 )
» bl-l J2b 3:%1 J2b1

second chain: (&, +k(&?1) ot (“b1+1)) " (ab +l)
Jab S J2"1 b1+1 J2b1+1 ’
tb1+2 Jabl +2 )b o ( 2_1 ng -3 2 tb2+kJ2b2._a)

(ay)
first chain : (t,+k, * ,t,°

175 2

(p,) (o 1) (o 43)
(wl)th ¢hain:(t._ h+k32bu X tb o Jabﬂ ):(% - F1l

(°b 2 lagy)  (ap)
L o+2 )""'(t3°1+k12£_3 bk,




A
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ns (for w=3, w+l=h)

[2y
[rs

n Tas ) _'*— —

first ) '3
. chain |

t

: Mp=2 | My,
Gp_.156 == e e \ N
Gb R = N - _

[}
2
¥ i -
§ — S _J_bZ?,4 . _
third | ) - - . -
chain <




562(29)/8

And we shall write the other Z(I:2)I2 o,
) o (a,
“,( WPg-1" , qaz) (aqaz+1)

(t +k S TR PG
*ap0.1 a0 qez 24

{a. ) (a, )
Sle, v, Bmel oy Ymy

Um-1 p-1 = YUnm 9fm

W

oi.,z er n 2'6‘1,22:.-.,2111

=
(=3
o
2]
o»
Cte: !
e ] S,n
[} !
(R
- ..
oS
- -

..a,’m f@f‘ n 23“1,22,...,3’3.

Bt i/"‘,%‘~ 8, 8, T8, -8, *** Ts “8 ;.
81 Bl Rl gy Ty I3y Jin-1 om

ek £ .03 » ;
o7 ;gmf..'zé r;,; (ai (ay)T .. (c ) (a3)
17 T, 2" J3 BCREI

r (Qpl) ' (“blﬂ.)r ‘*“‘b 41,4 ) (ab +2)
b

% = =V 91; . —a.
P1 Jap, -2 ", Jab, e Jab ! "oyt Jov +2

3

(a q22+2)
b,
Gger Jogry  %pn daps
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r (apw) (qb +l)r (abw+1 ) (dbw.pa) *e
Lk, bt K,
“2 Jabu e e A - L S P
ah (@p.5) (e p)
Gea) (e
£, o+ <t -k
£-1""85p.3 4 dnpn
I" ¥ f. ) e
o uy G, ) o aa (“%m
Gg.1 d20-1 By das °—2£+1 da 41 dppin 32!%2
. oy
t +k( qzm'l)at- _k(Gqu)
Yp-l -l Un m
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4
f

o0 e
=1t

)
qeﬂ-l "

i(t,  +k »
( %p-1 J28-1 %1 dgg "

AS——0a

( +k( q23+1)6t % q22+2 3

. ,
: . g,

) J A DA J” LA oe+l A .
J o1 J26n o2 22 £(Ngpqi)arg,
-7t 7

: (a ) (a_ )
T “appaa’ | Qp
V(s Kk, B g LYV
J‘ Um-1 J£m-1 qﬂm Jﬂm Zm/éf(xzm/ )dxz /2
T\ Nm/2/ /2

-T

We like to rearranga the order of integration and regroup the
exponentials according to the tj's. In this arrangement we can
only write out some of the Kj‘suexplicltly which are essential
to the proof and we shall denote by some uJ, 's the rest of the
A, !s whose exact positions 1in the following expression are

J
irrelevant to our argument. We have, then,
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) itg( ‘)‘j A+]\21:7+‘u2':; ’1+u2 ’2'*' ie -+u2,m=2)

-1 "b -2*’&; -1+“b -1,1"%, -1, st "Fublsl,m-‘é?)
1ty ( "b 2", 1, « T, ,m-l)

16, (=N +N L qtu
by*+l "bi "b1+1 b.

+-151+ub1+1;,2* .o +ubl

. L] . @ ® @ & o o o

eitz(‘xzai+u2,l+u£,2+'"*uﬂ,mhl)

1(k § s §Zz’>a+i<k§§f"’-k§§3)“e*-“

e

U 108,20+ 000, m T ENeE N 22N so
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By changing the order of summation and integration, we have

lopd  sin B ruy gruy gty )

e W [’ l“ sin 2()‘ Uyt gt Yy )

sin Bty o gt )
sin —-( x1+x Hy gty 2'...+u2’m=2)

sin 3(-», by 2"y, 1,2t My men)
stn My -1+“b1,1+“bl,2f"'+“b 1)

8in 2( 7\b1+"b1+1+“b 41,17, 41,27 +“b b +10-2)

s1n "“"b *"b 1, +1,..+"‘b +1,27 0 u‘blﬂ,m-e)

L] L] . . . . . . L) .

510 B(-hg_ytig g *up ot Ay )

sin —( )\z 1+u2 1~ U£ 2 ...+u_£ “1)

(a ) e, )
(a“) ( ") )x1+...+1(& Mm-1 "t Ny

1(k
J J
e J] Am-1 J fm

f(xl)f(hg).,.f(sz/a)dKldka,..dkﬁm/g (23)

Remark. (1) In (Mpruy y¥eovbuy g )y (SMFbug 5+ oy UL

(’xﬂel*uﬁ,l° Lty _1) there are exactly one KJ and one =XJ for

each J hence, (7\1+'l.11’l ,.,+u1,mgl)“...+( )\z 1+uﬂ 1 +u£’m_1)

509

-

e
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(i1) No two of 3|f"f1*“1,f“‘*“1,ma1 Is :|1a~-)\1+)‘2:+u2,1+.a;'wwa\a,é,j.m_é:Ilsj
cies 'I*Xg,_,i*ugjfa sty g | are ldentically equal, because
if any two f them were identically equal, it would imply S
18 decomposable with respect to L which would contradict
our assumption.

(111) Because m is odd,

Nty ey B O
;)\2-‘,-1 *uz.olih : iwl:mai %0
Our goal 18 to Show that the integral in (23) —> 0
as N=> oo . The absolute value of the integral in (23) 1s

less than
s

-7

lf SIG R RARL R
B(-Fgtg e 4 g p)

KN( = )\bl ‘].-+ubl’ 1!*! ' .+ubl,,m"l )
Ky ”‘bf"pff“bfl, 1t '*‘-‘blﬂ,m—a)

By(=hpytug,a* et o)

£(0)E0G) o (g p)aN AN L dhg sy (2H)
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Since the integral in (24) is finite for each N, by Fubini's
theorem we can rearrange the order of integration. Since
Kﬁ(x1+u1’1*.i.*uljmﬁl)xﬁ(hxzal+uz’1*@.a+u£’m;1)
150203 w4 am JHES(Np Uy Aty 2 ) ]
< UROGFuy gtew g gy WER(Ng g g¥eetuy oy )]s
(24) 1s less than
) 7 R
Py J f KNO Hy ¥y )
=% _
KN(a)j"F)é‘Fua,i;" e -+u2,m;2)

. . . o . . . . . O

KN(ikZ‘2+)\Z§1+uﬂ_1’i+ o ‘+u£§l,mi’2)

4N # 2,l+‘ . '+‘125m°2)

KN( _)\z_2+)\£_l+u2’l,l+ . a+u291,m!2)

Kﬁ(’}291+u£;l*"'+uzam’l)

£( )1)3( 7\2) o xzm/g)qﬁd@ . °@"zm/2}
(25)
If the last chain 1s of length 1, KN(’Xng*XZsl*uBel,l*"’
+++*Up_1,m-2) 1in (25) should be replaced by Kn(ekz,g*ug,lll*-ss
+ovtUg 3 pey)- In the second part of (25)
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KN(;XZ=?+Xﬂal+uB=1 1t ne)
£(A)e(Ng D f(Ng gl e dhg

(26)

—_— 0

lemma (2.4).
(11) the remaining part
X 1 n
~T5 7.5 N J‘.J‘ Kﬁ(-xz_l+uz ¥ty e 1)
5 £+2
(2r) T
f(xg_l)f(xz)f(xz*l)...r(xzm/é)dngldxg,.5dx2m¢2
m_ dm_p o
2 -~

< max[c3c1 =, C,04 ]

nence the second part of (25) approaches zero as N—>c0.
We can show the first part of (25) also approaches to zero as
N = oo by a similar argument.

Therefore (25) => O as N—=> & . It follows that
(24), and hence (23), approaches zero as N=> oo, Thus

l1emma (2.5) is complete.

Lemma 2.6 Let mbea positive odd integer and @,,85,...
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B(Yy, . YN, 0, TN, q,)
- M0y Nty 2Gp
) 0 for all N when £ 18 odd (a)

= & ». v _ ...z . when £ is even (b)
v A e ’%‘2%53’%4 I&Jﬂsli’ajﬁ

as N ~=> 6o, where . was defined in Theorem 1.
A

{Proof ].

The proof of part (a) is very simple.

A F 3 5 (X X X )

Wi =] 4 af'..“ =1 (GA) ( ‘7)..‘7 (‘af)
N7/C t.=1 t=1  tp=1 V% V% R |
AR R A e

(X (e (e F (g
bothy © bty © t2+km

. (] . ] . . . [ . . . .

(x ‘ol )
P e

() % (ay)

lemma (2,5), Lemma (2,5) tells us in (lé) only those terms
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whose subindex=pair set are decompoSable with respect to H have
non=zero limits and lemma (2.2) gives us the limits of these
terms which is just our desired result.

Hence lemma (2.6) is complete.

(b) E»(ﬁ:‘:1 ey, q

as N => oo, where £=0,1,2,... and pg, 6=1,2,...,n are any real
numbers .

[Pr@or] (a) Let A= {alaaz,-geaggz}

E( 2 p’a N, (1)2;Jg

m

REC .

< ) J LRI LY ey
2;1 quugg ngz A Gdl;qd_ GJ3: J4 J2£4.6322

(27)
by lemma 2.6. Note that (a, 2%y s e esTy ) are all permutations
‘ 317792 Jos

of (gl}gE)!!s;qu)! (27) is @qg@l to
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.
R NI ot T T aJéEal’GJE‘J

oMY

(3 fa

~ | N n
’ \Zadﬂ @)= 01 ap T %

J1 52
( n n

X §> = zs“ud:'ﬂa fa' s
AL R T !

I3

n n
qjgzél a322=1 a325-1 aaéﬁ GJéﬂal,aJéz )

But each factor in the summand
n n
= T M Fa
=] GJ =1 Je?él Jép

2p

r. _

a 3 &

% Jop-1” dop
2p-1

n o n
Z Z Py e T
o, =1 ay=1 Yo Fap 0ys

L

and there are ~7=~* t

which 1s our desired result.
(b) The assertion of (b) follows directly from lemma 2.6.

Hence lemma 2.7 1s proved.




562(29)/8 ¥

[Proof of Theorem 2]
Let
N

0 §'§§ tél xt+k(“) t+k2 o Xt+kéé)

and let

My

Iy =

ooy Pa'i,e

1

W

be any linear combination of YN,d’ a=l,2;...;n, whére
Pgs 6=1,2,...;n are any real numbers.
We have shown in lemma 2.7 that all the moments of
YN converges to the moments 6f a normal variable with mean ZzZero
and variance
n
Z Bgbg o ,a (28)

1 1 aesl 172 1’72

nwMds

a

By moments convergence theorem [7], the distribution function
of YN converges weakly to that of a normal variable with mean
zero and variance (28). Hence ¥y,q2 @=1,2,...,n 18 asymptotical-
1y, jointly normally distributed with mean zero and the desired
covariances.

Q.E.D,
Remark: From the proof, we see that the places where we need

m to be odd and Yy ., ¢=1,2,...,n to be of the same degree m are
A X RS

(1) =0

Fond® " ond®)
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and

(11)

] Nqtus

46

l 1+060+

| Moatug,at e Hig p # O

N

(1) can be justified easily when m 1& not odd by sub-

tracting the means and we shall see that after subtracting the

means (11) 4is alse justified, therefore Theorem 2 can easily

be generalized to6 the case that YN—d’ a=1,2,...,n are of degrees
?

My, respectively where mg, a=1,2,...,0A are any positive integers.
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3. The Main Theorem.

Theorem 3 Suppose £¢€L2(-n,%) and

:
1im =z | K(N)E(N)E 5¢
o, B JL K ME(N)dr (29)

exists and is finite. Then

5 N
v .1 .4 . , v .
Nya = N t1§1(Xt+k(“)xt+ (a)° t+ (“) A>(@)“‘x @))
a

41
t+ky t+kmd
a=1,2,...;n; where n is a positive integer and my are positive
integers and k§d),..a,ké§) are integers, are asymptotically

Jointly normally distributed with mean zero and covariances

r 5 =

a,B

if mgtmg 18 odd

o,y
he(B), . ic(B)
k kmB

if mg+m5 is even

and |r BI < %, a,B=1,2,...,n. In particular, if all
l
My » »rl,e,,,,,n, are even, the condition that

T
R R OLOL

exlists and is finlte is not needed.
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The first thing we have to do in the proof of Theorem
3 18 t6 Justify the remark (11) after Theorem 2. We first look
at the subindex table, now it becomes

G Y )'l"'.l(.(1 % tl"’k;ul) oo tfkéél)
| |

e

) e
2 ) t2+kéq2) t2+ (a2 (30)
%

o+
+

(d') (a ) (ag)
t2+k2 vea tz’*’km

o=
+

Let G = GIUG U ...UGz, 8o G contains Mfmal-i-ma;.

elements.

Let Bj = G«GJ R

We define a class of subsets of G; J to be such that

J_;l,g,’ . !,2 L

H ng,a, ..-,Z}

Also, we write

#
0

=3 (31)

gf
;
n
P
t Y

so we can ldentify each 8 3 with exactly one element in table (30)
by (31).
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We say

S = {(SJ ,3 ) (SJ ,S ),.”,(SJME JMz)}
1

32’...’832“ is a c¢eprtain

permutation of Slasga.e-sSMB‘

We say a subindex-pair set S is decomposable with

,respegb_to J if there are disjoint subsets S.
S US and S, =

1,82 of S such that

1= J,\is 13J for some J=1;2,...,4. Otherwise S
is not decomposable with respect to J.

We need a lemma to Justify the remark (1i) after

In the expansion of

‘(Xt +k( l)xt kéql)“. +k‘i: )-Ext +kj(-al)... . +k’ﬁ:1))
1M l 1
(xJc +k1 2)xt +k,ia )... : +k(a2)-Ext ﬂé“a)"'x (, y)
M T
(X see -HA I 4
tz*‘k(a z) t£+ kéﬂ ) tz"‘kr(:; Z) tzf"kiq 5) tz (023)
T, v 1

the sum of all the terms whose subindex-palr sets are decomposable

in the expansion, there is no term containing a factor like

—t..
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‘ }(GJ) s .X A
& 4+ t

[« )

E(X (0 )X
& 5+

Lo
I Tmg
- aJ
for some J=1,2,...,4.
[Proof] Write
e T - *5

J=1,2j6..jzé
Consider

E{(Wy~BWy ) (Wy-EW,,) .. . (W,-BWy) ) (32)
Let A = sum of all the terms in the expansion of (32) whose

subindex-palr set 18 decomposable with respect to J.

Let A, = sum of all the terms in the expansion of (32) which

1
contains EWi as a factor.
A, = sum of all the terms in the expansion of (32) which
contain EW,, but not Ewl, as a factor.
Ay = sum of all the terms in the expansion of (32) which
contain EWp, but not Ewl or Ewg ees OO Ewgélg as
a factor.

12
However

A

2 = B(Wy =B, JE{(W,-BW,) (W3-EW,) ... (Wp-EW, )}

=0
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A

5 = E(W2=EW2)E{(W16EW1)(WBsEWS)...(W2=EW£)}
~E(W,, =M, YE(W, -Bw, )E{ f(W3=EW37) oo o{Wy=EW )}
= 0

x>
]

~B(W5=BW 3 E(Hy ~EW) JE{(H,~EW,) (W, =EW,) ... (Wp=BWy)}

~E(W =B 5 ) B(W,~BW, )E{ (W -EW, ) (W, <BW, ) . .. (Wy-EW )3

+B(Wy=EW ) E(Wy <EVy JE(U, =B, )E{ (W -EW,) . .. (Wy=EWy)]
O )

W

Hence A = 0, Lermma 3.1 1s proved.

Lemma 3.1 justifies Remark (ii) after Theorem 2, hence
thé proof of Theorem 3 goes exactly like that of Theorem 2. We
shall state without proof several lemmas, and the conclusion of

Theorem 3 follows immediately.

as N => o0, q,p=1,2,...,n and moreover |r, BI < oo
,» @,P=1, 5, f

Note when all my are even, the condition (29) 1s not needed
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E{Yy o Yy o

1f 4 18 odd (a)

. J (v)

A P R I TR 7

1f £ is even
as N => o0, where Z‘. was defined in Theorem 1. Note in part (a)

of lemma 3.3, we have => 0 instead of = O in lemma 2.6 (a).

Lemma 3.4

E( 3 oYy )22
a=]

A

as N ~> o0 where Bq» 051,2,...,n are arbitrary real numbers and

220,1,2, see o
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A_Further Generalization.
uet

’km) = Xpae Xoriey v

Yy, alt) = z: 2

m=l Ky, . .,icma=a Ty okps -+ ok
: [W(t,ki, “a -’:1%;’) =EW(t,k—, o nvkm)]

N(kl’ 2,..., ﬁi) = i}g 2 [w(t:kii“iikﬁ)“w(tskli“iikm) ]

v e 2o V £
YN,M,C! -I\}E tz‘:l YM’d(t)

M a
=mz-:-lk,..} _.aak-lkg,...,k WKy sl - e 0¥y) (33)

where a,. . -1*i are real numbers, and
KoKy ‘Sn ’

C(k‘:;’kz' oo ukmakl:kga v o:kx;g)

= BIW(t ks oo osly) -BW(t, Ky, o0 sdc) ]

[W(t:ki: ve "kl;) 'Ew(t:k—_;_J o "kn;s)‘ 1
r(k—lokzo .o :k :k 01‘2: .o 'olﬁnv

Nl};nooEWN(kl s - '°’km)WN(k1 kg,., ,km.) (34)

Lemma 3.2 assures the existence of the limlt r

Suppose

S (o]
Z =z z T |, a

,km,
131, o.,m ;;l’u-.’m’

Ky 15Ky 3;11_1_(!1(;1- 0(k1: .o ”ﬁn’k’l’ .e .‘.km )M < 0(035)
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Then

.y _in the mean
Ty, g(8)

Bl y(t) |2

as My,a => oo , where

im  ElY,
9 0=

La(®)12

[o0] 0 (oe)
b z '2
mEl k. =<00 1= =& 00
m=1 ki” 00 mt=} ki =00

1::13u ’.7 o,m 1'-;1 .. o'
Ky 18y ket <kl
[Proor ]
Then

2
o, (8]

o ! . aa
. Z _ = i _

kg8 ky_aSky
nooo% Mo

z z - 2

\ ';1 ki,ege;‘ “al
ki-1$k:i

e(k
Let M;,M,,a,,0, be any positive

kl,kg,;a.,kh

IW(t,kl,..,km)-EW(t ey eesly)]

(36)

l"k2" LR -:k k]'_.vke") . ':kml
sm!

SKgs e rakle sy o u k)

integers and let

(37)
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r o - % g -
<(S = +32 § \(z =z, 3
w=1 a<lk, | Mdn k,=- |{mi=1 a<lk/| Mm i, =~ 0
iéi’ "/5’m iil‘ i,i-i,ﬁ i=l,oon,m' 121,...,m

ki)--.‘,km ‘kl,iii’l%'
By (35); for each ¢ > O, we can choose an M(&) > 0 and an

a(e) 5> 0 such that

¥ = T = la, Bt
ol acliy | mi=l kfseo ETTREE A C PRPRV Y
k"l, ok :m 1"‘1’ ) ,m '

1155 k‘{'l-ki c(klaakm:k{,,kn;,H({_

and

5 T T

M ky=-00  m'=] ki=- 00 TR N TR
j_-’_l’n’a,m 1=l’ooo)mi

g Ky iy, e skpelys e nakg )< (39)

M1 8

whenever M > M(t) and a > a (€).

From (38) and (39), it follows

ElY (t)12 < e

(t)
Mot Tig,e,
whenever M),M, > M(e) and ay58y > a(__e), Hence XM’g(t) converges

in the mean as M,a —> 00 and

The assertion (37) follows easily from (35). Q.E.D.
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We have shown that given (35) the ¥(t) in (36) exists
in the mean. Now we should like to find a condition on the

coefficients 8 .k _ such that
] 1,1{21 §as 5,1%_“
—§N z Y(t)

is asymptotically normally distributed.
Let
(ks kss - o ’l(rn’ki’ke" . ’kl":x')
e U B o,
= EWN(klakza .o "lﬁn)wN(kl"k?' s e 'kal)
and

q(kl).oookm ,""lﬂ’n ) = 12§gwrN(k1’...,km’ l’..."k]n ) (uo)
Then one of the sufficient conditions for YN asyrptotically
normally distributed is
0 %? 0 0
PN ) Z z
m-l kl,...,km_-m m.=1 k}’a.-’k&'gm ,.."k akl’.‘.,km'

ky 1<Ky ki kg

] ] t
Ny ks oo eslipely s Kps ooyl )] < 00
(41)
Condition (41) assures the uniform

convergence of

3. = % % b |a a '
LSRN IR T U LY SR

o skt ] (B2)

for all N, which is sufficient to give asymptotic normality of
Yy, The proof will be carried out in Theorem 4.2.
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(41) is not a very unpleasant condition; since we
can easily give an upper bound for each n(ky,... ’km’ki’ ..,km )
independent of N. By Corollary 1.1

EWN(kla o i’km)wN(kji.»’ s i:kf:“)

5 N N

X & &

b B E et )1
i t1=1 ta_l t1+k1 t:l+k, ‘bl+k1 K

[xt2+kixt2+kn'l, “B(X, oty " e 4! )]

if mkm' is odd

§ g
I' N ]:"-‘_i__ Py f"f =)
;1_1 . =1 A L}A le’ng k33 kJu kJéuhl kaw

et
M\ -4
n)

Pet gt Tt g oo Dy k!
Py Po kp3 Py kpem-aal Powtop

)uo Ty hky ~tytk! )

Pt +k k!
100 "2 Pouropra Sy 2 Py

if mtm! is even
. 1 1} ) mlgm
where Am = {kl’.",km-} s Am' = {kl,oco,km!} and B = "—-—-2’ .
a simple estimation,
BWyy(ky 5 o - sl )Wy (k.l,...,km ) =0 if mm! is odd
and  |BWy(kys .. 0sk )W (kl,...,k D

gmmi)l F 2 o if wm' 18 even  (43)
22 (mRY),

for all N, where
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comx( ¥ of, owg [ Bor00a) (44)

=00

Hence, we can replace n;(kl,.“,km,ki,a.i,kf;,) in (41) vy

;(kj_: H-skm:kjtsnulﬁ;i) _<‘-' 0 if mtm'! is odd

: if mm' is even
7 ) (45)

and get a more explicit sufficient condition for asymptotic

normality of l% Z ¥(t)
Ne ¢=1
& P % ) |
pX 2 s 3 - A o
mel kps e okgmeo0 misd K],k meco Kps sk s skl
ky 15Ky lef _a<k{

Wliegs o eliyely e esliy) <0 (46)

Theorem 42 Suppose fé;Le(,ﬁ,n) and

exlists and is finite. Then
N

where Y(t) was defined in (36), 1s asymptotically normally dis-

tributed with mean zero and variance
o) 0 o) o)
p = Z P2 z z 2, , a '
m;l kl””?km;!m mlgl Ki,!._!?kl;!!;g@ al@l’oo!)kmakiﬁo,'-)kmg
K118 EREL

g0 s - O
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where r’(kl,—n., m,k ,...,km ) is defined in (34), if (41) holds

or in pavticular if (46) holds.
The condition lim 5%; f

5 KS(AN)£(N)d\ exists and is
N> o0 2

=50
finitée 18 not needed if ak =0 wheénever m 1§ odd.
1, ,noo,krn

[Proof] As we have remarked before condition (41) implies that

a-oo 'akijia.,kmak{,,“,kig'

t‘_“‘,“»i.i N o . st P | ‘

1-1="1 rN(ki,...,km,kig...,km,)l
converges uniformly for all N and BN is a uniformly bounded
sequence. Therefore

_ - a ) .
YN’M,G m"'l kl.' L 020,k ""a kl k2, .. ')k N(kl,ka, ot ‘ka)

2 s s YN "g z Y(t)

bas;

0o o0
= X z
m-l k se e S 00
12 22 3l
ﬁi-l_ki ]

SN BRI

P, exists by Theorem 3 and
: M,(I
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M M
= 3 2 =

) S ) Z 8, - 1
m=l %kilép mt=]l Ik{[ga Kyooeosky Ry, 00 ok,

1=1;.,.,m 1=1;...;m!? , _
ki3l$ki ki=l$ki f(kliissskm:ki:issiké)-
By (41) or (46), we have the p of (47) exists and is finite and
Py, o = P a5 M8 —>00 (49)
It 1s easy to show that (48) implies, for fixed t,

1t¥% oo 1tY,; N
Be 9} —s (e V) (50)
uniformly for all N as Mya =>oo, By (49) and (50) we have,
for each & >0 and fixed t, an M(&,t) >0 and an a(&,t) > 0
such that 3 .2 .2
=kpy 485 -EPtS d
l‘e pM__,G - e | <—§- (51)
and . .

16¥% M. ¢ 1Y 7
Bfe MM} mle M < £ (52)
whenever M > M(e,t) and « > a(e,t). By Theorem 3, for each

(e,M,a,t), we have an N(e,M,0,t) > O such that
2
16Y, o “4p, t°
loge MMy L LS | g (53)

whenever N > N(e,M,a,t). By (51), (52) and (53), we have, for

each ¢,

] P
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373"
whenever N > N(¢,M,a,t).

The author 1s much indebted to Professor M. Rosenblatt
for suggesting this problem, for his guldance throughout the

work and for his comments on the final manuscript.
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3 ,
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